Abstract

Among the numerical abstract domains for detecting linear relationships between program variables, the polyhedra domain is, from a purely theoretical point of view, the most precise one. Other domains, such as intervals, octagons and parallelotopes, are less expressive but generally more efficient. We focus our attention on interval constraints and, using a suite of benchmarks, we experimentally show that, in practice, polyhedra may often compute results less precise than the other domains, due to the use of the widening operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.