Abstract

BackgroundDiabetes mellitus (DM) is frequently associated with peripheral and central complications and has recently emerged as a risk factor for cognitive impairment and dementia. Kynurenic acid (KYNA), a unique tryptophan derivative, displays pleiotropic effects including blockade of ionotropic glutamate and α7 nicotinic receptors. Here, the influence of experimental diabetes on KYNA synthesis was studied in rat brain. MethodsDM was induced by i.p. administration of streptozotocin (STZ). Five weeks later, KYNA content and the activity of semi-purified kynurenine aminotransferases (KATs) were measured in frontal cortex, hippocampus and striatum of diabetic and insulin-treated rats, using HPLC-based methods. ResultsHippocampal but not cortical or striatal KYNA concentration was considerably increased during DM, either untreated or treated with insulin (220% and 170% of CTR, respectively). The activity of kynurenine aminotransferase I (KAT I) was not affected by DM in all of the studied structures. KAT II activity was moderately increased in cortex (145% of CTR) and hippocampus (126% of CTR), but not in striatum of diabetic animals. Insulin treatment normalized cortical but not hippocampal KAT II activity. ConclusionsA novel factor potentially implicated in diabetic hippocampal dysfunction has been identified. Observed increase of KYNA level may stem from the activation of endogenous neuroprotection, however, it may also have negative impact on cognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.