Abstract
Purpose: The present study focuses on a systemic approach to develop liposomal aztreonam as a promising dosage form for inhalation therapy in the treatment of pneumonia and explores the in-vitro antimicrobial and cell uptake efficacy. Methods: Liposomes were prepared by ethanol injection method using the lipids - soya phosphatidylcholine (SP) and cholesterol (CH). A central composite design (CCD) was employed to optimize the lipid composition to evaluate the effect on vesicle size, zeta potential and entrapment efficiency of the formulation. A numerical and graphical optimization was carried out to predict the optimized blend. The optimized formulation was characterized for vesicle size, surface charge, encapsulation, surface morphology, differential scanning calorimetry (DSC), powder X Ray Diffraction (PXRD), thermogravimetric analysis (TGA), in vitro diffusion, accelerated stability studies, antimicrobial studies on Pseudomonas aeruginosa NCIM 2200 and in vitro cell uptake studies. Results: The optimized formulation was found to have a particle size of 144 nm, a surface charge of -35 mV, with satisfactory drug entrapment. The surface morphology study proved the formation of nanosized vesicles. The drug release from liposomal matrix was biphasic in nature. The solid-state study revealed the reason for good encapsulation of drug. The moisture retention capacity was found to be minimum. The anti-microbial study revealed the potential antibacterial activity of the optimized formulation over the pure drug. The formulation was found to be safe on the epithelial cells and showed a marked increase in cellular uptake of aztreonam in a lipid carrier. Conclusion: It can be concluded that the optimized liposomal aztreonam could be considered as a promising approach for the delivery of aztreonam through inhalation.
Highlights
CResults: The optimized formulation was found to have a particle size of 144nm, a surface charge of -35 mV, with satisfactory drug entrapment
The present study focuses on a systemic approach to develop liposomal aztreonam te as a promising dosage form for inhalation therapy in the treatment of pneumonia and explores the in-vitro antimicrobial and cell uptake efficacy
It is an opportunistic bacterium that colonizes in the bronchopulmonary tract and forms a thick biofilm owing to its fast growth.[3] c Antimicrobial resistance has been reported to the class of antibiotics known as carbapenems.[4]
Summary
CResults: The optimized formulation was found to have a particle size of 144nm, a surface charge of -35 mV, with satisfactory drug entrapment. The drug release from liposomal matrix was biphasic in nature. The solid-state study revealed the reason for good encapsulation of drug. The moisture retention capacity was found to be minimum. The anti-microbial study revealed the potential antibacterial activity of the optimized formulation over the pure drug. The formulation was found to be safe on the epithelial cells and showed a marked increase in cellular uptake of aztreonam in a lipid carrier
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.