Abstract

Designing correct engineering infrastructures to reduce land degradation processes and considering natural elements to achieve this goal are key to correctly managing potential natural hazards affecting human activities and natural ecosystems. This research investigated the scour depth and velocity vectors around bridge piles with and without upstream vegetation protection. A Doppler velocity meter was used to measure velocity components in a channel 90 cm wide, 16 m long, and 60 cm high. Variable parameters were the number of bridge piles, the height, density, and width of vegetation upstream, as well as the distance between bridge piles. Using a triple pile group with a distance between piles of 10 cm and overall vegetation across the channel, the depth of the scour hole upstream of the first pile decreased by 40% compared to the single pile with no vegetation. This result shows the significant impact of using vegetation and pile groups to reduce scour around piles. Lower vertical velocity gradients, more consistent velocity vectors, reducing the downstream flow range, and restraining horseshoe vortexes and wake vortices were observed in utilizing vegetation. We confirmed that vegetation is an essential factor in changing the flow, transportation of sediment, and conserving ecological services in rivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.