Abstract
An experimental investigation of two potential candidate materials for the diamond die attachment is presented in this framework. These efforts are motivated by the need of developing a power electronic packaging for the diamond chip. The performance of the designed packaging relies particularly on the specific choice of the solder alloys for the die/substrate junction. To implement a high temperature junction, AuGe and AlSi eutectic alloys were chosen as die attachment and characterized experimentally. The choice of the AlSi alloy is motivated by its high melting temperature Tm (577°C), its practical elaboration process and the restrictions of hazardous substances (RoHS) inter alia. The AuGe eutectic solder alloy has a melting temperature (356°C) and it is investigated here for comparison purposes with AlSi. The paper presents experimental results such as SEM observations of failure facies which are obtained from mechanical shear as well as cyclic nano-indentation results for the mechanical hardening/softening evaluation under cyclic loading paths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.