Abstract

Carbon fiber reinforced composites have received growing attention because of their superior performance and high potential for lightweight systems. An economic method to manufacture the parts made of these composites is a sequence of forming followed by a compression molding. The first step in this sequence is called preforming that forms the prepreg, which is the fabric impregnated with the uncured resin, to the product geometry, while the molding process cures the resin. Slip between different prepreg layers is observed in the preforming step, and it is believed to have a non-negligible impact on the resulting geometry. This paper reports a method to characterize the interaction between different prepreg layers, which should be valuable for future predictive modeling and design optimization. An experimental device was built to evaluate the interactions with respect to various industrial production conditions. The experimental results were analyzed for an in-depth understanding about how temperature, relative sliding speed, and fiber orientation affect the tangential interaction between two prepreg layers. Moreover, a hydro-lubricant model was introduced to study the relative motion mechanism of this fabric-resin-fabric system, and the results agreed well with the experiment data. The interaction factors obtained from this research will be implemented in a preforming process finite element simulation model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.