Abstract

The ion-plasma thermal barrier coatings deposited onto samples and blades made of intermetallic VKNA-1V and VKNA-25 alloys are tested in a laboratory. The external ceramic layer of the thermal barrier coatings (TBC) is formed by magnetron sputtering of zirconium alloy targets and has a columnar structure. The influence of NiCrAlY(Re, Ta, Hf) + AlNiY(Hf) + ZrYGdO TBC on the long-term strength at a test temperature of 1200°C and on the high-cycle fatigue at a temperature of 900°C is studied. Blades with TBC are subjected to thermal cycling tests in the temperature range 950 ↔ 400°C and 1050 ↔ 400°C during air cooling and in the range 950 ↔ 200°C during water cooling at 500 cycles. The temperature fields in the cross section of a blade airfoil during thermal cycling are calculated. The laws of formation of fracture zones and the development of thermal fatigue cracks under the conditions that are close to the operating conditions of nozzle TBC-containing blades are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.