Abstract

With the advent of high-energy-density (HED) experimental facilities, such as high-energy lasers and fast Z-pinch, pulsed-power facilities, millimeter-scale quantities of matter can be placed in extreme states of density, temperature, and/or velocity. This has enabled the emergence of a new class of experimental science, HED laboratory astrophysics, wherein the properties of matter and the processes that occur under extreme astrophysical conditions can be examined in the laboratory. Areas particularly suitable to this class of experimental astrophysics include the study of opacities relevant to stellar interiors, equations of state relevant to planetary interiors, strong shock-driven nonlinear hydrodynamics and radiative dynamics relevant to supernova explosions and subsequent evolution, protostellar jets and high Mach number flows, radiatively driven molecular clouds and nonlinear photoevaporation front dynamics, and photoionized plasmas relevant to accretion disks around compact objects such as black holes and neutron stars.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.