Abstract

This work reports the experimental study of a single-cylinder compression ignition engine fueled with a renewable diesel from sugarcane called farnesane. The engine is representative of current small-scale power generation in very isolated rural areas existing in Brazil. A complete experimental assessment was made on engine combustion, performance, and pollutant emissions at 1800 rpm under different loads (from 4 to 7 bar IMEP). Results showed reduced values for the ignition delay, in-cylinder peak pressure and mean temperature when using farnesane compared to conventional diesel fuel, as well as lower heat release rate peaks at the premixed combustion phase and shorter diffusion combustion duration. Physicochemical properties differences, such as cetane number, H/C ratio and the biofuel paraffinic structure led to interesting emission behavior. Farnesane reduced NOx emissions by up to 34% (and further 48.6% using EGR), and particulate matter by up to 92%. Despite the higher in-cylinder peak pressure and greater fuel conversion efficiency for diesel fuel at the highest load, the biofuel exhibited gains of up to 3.3% in combustion efficiency and 5.9% in fuel conversion efficiency at intermediate and lower loads. Such improvements are closely related to the HC and CO levels depletion and the absence of aromatic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.