Abstract

The main purpose of this research is to investigate experimentally the optimal process parameters of thermal friction drilling process, based on the design of experiment method coupled with fuzzy logic and analysis of variance techniques, considering the resultant axial force and bushing length. A friction drilling machine is designed, and manufactured in Shoman Company — Egypt to perform the experimental work, and the tools are offered by Flowdrill Company — Netherlands. A temperature-dependent dynamic explicit modeling is applied, considering adaptive meshing, element deletion, and mass scaling techniques. The resultant optimal parameter levels combination is: 9.2mm tool diameter, 30° friction angle, 50% friction contact area ratio, 60mm/min feed rate, and 3500rpm rotational speed. A comparison is performed between the experimental and thermo-mechanical modeling results, considering the axial force, and a similar trend is achieved. Also a regression analysis is applied to predict the expected axial force and bushing length and confirmed by confirmation test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.