Abstract
We report experimental and theoretical near-edge x-ray absorption fine structure (NEXAFS) spectra of clean and arsenic-capped gallium arsenide and the pseudo-binary alloy indium-gallium arsenide. Experimental data were obtained using synchrotron-radiation total-photoelectron-yield spectroscopy from the Ga(M2,3), As(M2,3), In(N2,3), and In(M4,5) edges. In addition, both C(K) and 0(K) NEXAFS spectra, and photon-stimulated ion-desorption mass spectra were obtained to assess and monitor the sample cleanliness. The samples studied were grown by molecular-beam epitaxy at China Lake and capped with arsenic for protection during transit to the Stanford Synchrotron-Radiation Laboratory. We have found by monitoring the As edges that heating the samples to 300 or 350A‚°C completely removes the arsenic cap. Also, we find that after evaporation of the As cap, the NEXAFS spectra are identical for capped and uncapped samples. Theoretical calculations of the arsenic NEXAFS spectra were performed using a full multiple-scattering theory. The inputs to the calculations were ab initio phase shifts, calculated using pseudopotentials and a model geometry. Theoretical calculations of the arsenic NEXAFS spectra of In0.53Ga0.47As crystals are reported also. Here, the calculations are performed by creating many model crystals that have the appropriate stoichiometry and averaging the resulting spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.