Abstract

Structure and mechanism of thermal and photochemical reactions of radical cations of methyl n-propyl ether (MPE) were studied in irradiated freonic matrices CFCl3, CF2ClCFCl2, and CF3CCl3 at 77 K. The quantum chemical calculations of the structure of radical cations and products of their transformations were carried out with methods based on the density functional theory (DFT). Experimental and calculation results show that the MPE radical cations are characterized by substantial delocalization of spin density to the propyl group. The action of light on the MPE radical cations in a CF3CCl3 matrix at 77 K results in intramolecular rearrangement yielding the distonic radical cation .CH2CH2CH2(OH+)CH3. It was found that the primary MPE radical cations underwent irreversible transformation to CH3CH2CH2OCH2. radical as a result of an ion-molecule reaction that occurred in a CF2ClCFCl2 matrix upon heating the sample to 110–120 K or in a CFCl3 matrix upon increasing the solute concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.