Abstract

We consider thermochemical mantle plumes with thermal power 1.6·1010 W<N<2.7·1010 W (relative thermal power 1.15<Ka<1.9) as plumes with an intermediate thermal power. Such plumes are formed at the core–mantle boundary beneath cratons in the absence of horizontal free‐convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. A proposed scheme of convection flows in the conduit of a plume with an intermediate thermal power is based on laboratory and theoretical modeling data. A plume ascends (melts out) from the coremantle boundary to critical depth xкр from which magma erupts on the Earth’s surface. The magmatic melt erupts from the plume conduit onto the surface through the eruption conduit. The latter forms under the effect of superlithostatic pressure on the plume roof. While the thickness of the block above the plume roof decreases to a critical value xкр, the shear stress on its cylindrical surface reaches a critical value (strength limit) τкр.Rock fails in the vicinity of the cylindrical block and, as a consequence, the eruption conduit is formed. We estimate the height of the eruption conduit and the time for the plume to ascent to the critical depth xкр. The volume of erupted melt is estimated for kinematic viscosity of melt =0.5–2 м2/с. The depth Δx from which the melt is transported to the surface is determined. Using the eruption volume, we obtain a relationship between the depth Δx and the plume conduit diameter for the above‐mentioned kinematic viscosities. In the case that the depth Δx is larger than 150 km, the melt from the plume conduit can transport diamonds to the Earth’s surface. Thus, the plumes with an intermediate thermal power are diamondiferous. The melt flow structure at the plume conduit/eruption conduit interface is determined on the basis of the laboratory modeling data. The photographs of the simulated flow were obtained. The flow line velocities were measured in the main cylindrical conduit (plume conduit) and at the main conduit/eruption conduit interface. A stagnant area is detected in the 'conduit wall/plume roof’ interface zone. The melt flow in the eruption conduit was analyzed as a turbulent flow in the straight cylindrical conduit with diameter dк. According to the experimental modeling and theoretical data, the superlithostatic pressure in the plume conduit is the sum of the frictional pressure drop and the increasing dynamic pressure in the eruption conduit. A relationship between the melt flow velocity in the eruption conduit and superlithostatic pressure has been derived.

Highlights

  • Аннотация: Рассматриваются термохимические мантийные плюмы, имеющие тепловую мощность 1.6·1010 Вт

  • The magmatic melt erupts from the plume conduit onto the surface through the eruption conduit

  • While the thickness of the block above the plume roof decreases to a critical value xкр, the shear stress on its cylindrical surface reaches a critical value τкр.Rock fails in the vicinity of the cylindrical block and, as a consequence, the eruption conduit is formed

Read more

Summary

ВВЕДЕНИЕ

В настоящее время интенсивно развиваются численные модели образования и подъема термо‐ химических плюмов [Kotelkin, Lobkovskii, 2011; Lin, van Keken, 2006; Trubitsyn, Kharybin, 2010; Zhong, 2006; Yang, Fu, 2014; и др.]. В модели [Kirdyashkin et al, 2004] мантийный термохимический плюм формируется на границе ядро – мантия при наличии теплового потока из внешнего ядра в локализованной области поступ‐ ления химической добавки, понижающей темпера‐ туру плавления нижней мантии. В задачу нашего иссле‐ дования входит: (1) определение тепловой и гид‐ родинамической структуры термохимических плю‐ мов промежуточной мощности, оценка их основ‐ ных параметров и геодинамических условий изли‐ яния расплава, образованного этими плюмами; (2) определение гидродинамической структуры тече‐ ния в канале термохимического плюма у его кров‐ ли и в области сопряжения канала плюма с кана‐ лом излияния, по которому магматический расплав из канала плюма прорывается на поверхность. На основании зависимости глубины выноса расплава от диаметра плюма вы‐ делены плюмы, расплав из канала которых может доставлять алмазы на поверхность, и плюмы, рас‐ плав которых не транспортирует алмазы на по‐ верхность. В заключение получено выра‐ жение для перепада давления в канале излияния и показана его зависимость от скорости течения рас‐ плава

ТЕПЛОВАЯ И ГИДРОДИНАМИЧЕСКАЯ СТРУКТУРА
МОДЕЛЬ ИЗЛИЯНИЯ РАСПЛАВА ИЗ КАНАЛА ПЛЮМА ПРОМЕЖУТОЧНОЙ
ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА ДЛЯ
СТРУКТУРА ТЕЧЕНИЯ В КАНАЛЕ АЛМАЗОНОСНОГО
ЗАКЛЮЧЕНИЕ
БЛАГОДАРНОСТИ

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.