Abstract

The terahertz absorption and Raman scattering spectra of an alanine crystal in the range of 0.2-2.6 THz were obtained using terahertz time-domain spectroscopy and low-frequency Raman spectroscopy. The results indicated that there were four vibrational modes in this low-frequency region. Two modes were Raman active whereas the other two were both infrared and Raman active. A theoretical investigation on the periodic structure of alanine was performed using a self-consistent field crystal orbital method based on the B3LYP hybrid density functional. By comparing the experimental and theoretical results, irreducible representations were assigned to the corresponding peaks in the spectra. It was indicated that the vibrational modes in this low-frequency region were mainly torsion or rocking modes involving inter-molecular hydrogen bonds which have been described using schematic representations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.