Abstract

Understanding the mechanisms of phase formation and their influence on the mechanical behavior is crucial for materials used in structural applications. Here, the phase decomposition under heat treatment in the Cr7Mn25Co9Ni23Cu36 (atomic percentage) high-entropy alloy and how secondary phases formed affect its tensile mechanical response are reported. The microstructural analysis shows that heat treatment at 800 °C /2 h and 600 °C /8 h led to the formation of sigma phase, but the sigma phase was not observed for 2 h heat treatment at 600 °C and below. The experimentally observed thermal stability and phases are compared to the calculated phase diagram and rationalized by recourse to thermodynamics and kinetics. The mechanism of phase decomposition is discussed based on ab initio calculations, indicating that decomposition into two solid solution phases is energetically preferred over a single solid solution phase with nominal composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.