Abstract

Quantitative analysis of complex self-excitatory wave patterns, such as cardiac fibrillation and other high-order reentry, requires the development of new tools for identifying and tracking the most important features of the activation, such as phase singularities. Image processing operations can be used to detect the phase singularity at the tip of a spiral wave. The phase space behavior of a spatiotemporal sequence of data may be reconstructed using time-series analysis. The phase singularities then are localized efficiently by computing the topologic charge density as the curl of the spatial phase gradient. We analyzed the singularity interaction dynamics of both experimentally observed and numerically simulated instances of quatrefoil reentry and found that the singularity behavior in the experimental preparations can be classified into three categories on the basis of how their separation changes with time. Topologic charge densities can be calculated easily and efficiently to reveal phase singularity behavior. However, the differences between theoretical and experimental observations of singularity separation distances indicate the need for more sophisticated numerical models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.