Abstract

AbstractDynamic fracture behaviour of AISI 1045 steel for compressor crankshaft was studied by experimental and numerical methods. True stress–strain relations of the material under different strain rates were measured, and dynamic constitutive model with consideration to strain‐hardening and strain‐rate hardening was proposed. Dynamic fracture tests loaded by Hopkinson pressure bar were carried out, and fracture toughness was determined using a finite element method with the combination of ABAQUS and Zencrack software. Loading states of the specimen and determination methods of the dynamic fracture toughness were discussed. By comparing the fracture behaviours under quasi‐static and dynamic conditions, it was found that the fracture modes exhibited a transition from ductile to brittle fracture with the increasing loading rate, and the dynamic fracture toughness value was less than the quasi‐static one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.