Abstract

Previous studies have proposed a cyclic ductile fracture model by applying the void growth model and an established rule in incremental form, in which only a monotonic tensile coupon test is required to calibrate the parameters of the fracture model and the corresponding plasticity models. The model parameters were deduced from small-scale hourglass steel coupons, but not from large-scale specimens. In practice, however, ductile fracture after the occurrence of local buckling has been observed in steel members during recent huge earthquakes. This paper aims to establish a simulation method for the postbuckling cracking process on the basis of formerly proposed fracture and plasticity models. Experimental results demonstrate that the ultimate behaviors of heat-treated square hollow section (SHS) stub columns associated with plate buckling and ductile fracture under cyclic loading can be simulated with favorable accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.