Abstract

Experimental and numerical study has been performed to investigate the combined effects of lid movement and buoyancy on flow and heat transfer characteristics for the mixed convective flow inside a lid-driven arc-shape cavity. The numerical methodology is based on a numerical grid generation scheme that maps the complex cross section onto a rectangular computation domain. The discretization procedure for the governing equations is based on the finite-volume method. In experiments, steady-state temperature data are measured by T-type thermocouples, and the flow field is visualized by using kerosene smoke. Reynolds number and Grashof number are two major independent parameters representing the effects of lid movement and buoyancy, respectively. Flow pattern, friction factor, and Nusselt numbers are investigated in wide ranges of these independent parameters. Close agreement in the comparison between the predicted and the visualized flow patterns shows the validity of the numerical methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.