Abstract

The dynamic response of bolted joints subjected to torsional excitation is investigated experimentally and numerically. First, the effects of the initial preload and the angular amplitude on axial force loss of the bolt were studied. Second, the change of hysteresis loops with the increasing number of loading cycles was found under a larger torsional angle. At last, a fine-meshed three-dimensional finite element model was built to simulate the bolted joint under torsional excitation, from which the hysteresis loops were obtained under varying angular amplitudes. The results of numerical analysis are in good agreement with those of experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.