Abstract

In this paper, a nondestructive laser ultrasonic technique is used to generate and detect broadband surface acoustic waves (SAWs) on human teeth with different demineralization treatment. A scanning laser line-source technique is used to generate a series of SAW signals for obtaining the dispersion spectrum through a two-dimensional fast Fourier translation method. The experimental dispersion curves of SAWs are studied for evaluating the elastic properties of the sound tooth and carious tooth. The propagation and dispersion of SAWs in human teeth are also been studied using the finite element method. Results from numerical simulation and experiment are compared and discussed, and the elastic properties of teeth with different conditions are evaluated by combining the simulation and experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.