Abstract
Ceramic materials characterized by high hardness, high inherent strength, low density and excellent dimensional stability have been extensively applied in the design of high-performance and lightweight protective structures to resist the high-speed projectile impact. In order to study the anti-penetration capability of ceramic balls protected ultra-high strength concrete (CB-UHSC), high-speed projectile impact tests were conducted at striking velocities of 545 m/s, 679 m/s, and 809 m/s to investigate the impact performance of ceramic balls, projectiles, and the protected UHSC. The experimental results indicated the effectiveness and economy of ceramic balls in resisting the high-speed projectile impact. Numerical studies were then conducted to reproduce the projectile penetration process within CB-UHSC targets with the assistance of LS-DYNA. Based on the validated numerical models, impact resistance and ballistic deviation of projectiles, as well as the energy evolution between projectiles and targets, were further investigated to comprehensively understand the impact performance of this newly designed protective structure under projectile penetration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.