Abstract
This paper describes experimental and numerical investigations of a three-stage high pressure research turbine which incorporates fully 3-D bowed blades at various operating conditions. Experimental data were obtained using interstage aerodynamic measurements at three measurement stations, namely, downstream of the first rotor row, the second stator row and the second rotor row. Measurements were conducted through the use of five-hole probes traversed in both circumferential and radial directions to create a measurement window. Aerodynamics measurements were carried out within a rotational speed range of 1800 to 2800 RPM. Numerical simulation of the aforementioned turbine was performed through the use of a commercial computational fluid dynamics code. A detailed mesh of the three-stages was created and used to simulate the corresponding operating conditions and a comparison was made between experimentally and numerically determined aerodynamics and turbine performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.