Abstract

Improved designs for Autonomous Underwater Vehicles (AUV) are becoming increasingly important due to their utility in academic and industrial applications. However, a majority of such testing and design is carried out under conditions that may not reflect the operating environment of shallow water AUVs. This may lead to imprecise estimations of the AUV's performance and sub-optimal designs. This article presents experimental and numerical studies carried out in conjunction, to investigate the hydrodynamic characteristics of AUV hulls at different Reynolds numbers over sloped channel-beds. We carry out experiments to measure the velocity field and turbulent statistics around the AUV with quantified uncertainty. These are contrasted against corresponding flat bed experiments to gauge the effect of test bed topography on AUV performance. The experimental data was used to validate Reynolds Stress Model predictions. Hydrodynamic parameters such as drag, pressure and skin friction coefficients were predicted from the RSM simulations at different test bed slopes, angles of attack and drift angles of the AUV hull, to analyze the hydrodynamic performance of the AUV. The results presented in this article offer avenues for design improvement of AUVs operating in shallow environments, such as the continental slope and estuaries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.