Abstract

The machining of hard-to-cut materials with a high degree of precision and high surface quality is one of the most critical considerations when fabricating various state-of-the-art engineered components. In this investigation, a comprehensive three-dimensional model was developed and numerically simulated to predict kerf profiles and material removal rates while drilling the aluminum-7075-T6 aerospace alloy. Kerf profile and material removal prediction involved three stages: jet dynamic flow modeling, abrasive particle tracking, and erosion rate prediction . Experimental investigations were conducted to validate the developed model. The results indicate that the jet dynamic characteristics and flow of abrasive particles alter the kerf profiles, where the top kerf diameter increases with increasing jet pressure and standoff distance. The kerf depth and hole aspect ratio increase with jet pressure, but decrease with standoff distance and machining time. Cross-sectional profiles were characterized by progressive edge rounding and parabolic shapes. Defects can be minimized by utilizing high jet pressure and small standoff distance. The material removal rate increases with increasing jet pressure, abrasive particle size, and exposure time, but decreases with increasing standoff distance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.