Abstract

Quasi-static (10−3–10−1s−1) and high strain rate (∼900s−1) compression behavior of an E-Glass fiber woven fabric reinforced Polyester matrix composites was investigated by using a Shimadzu AG-I testing machine and a Split Hopkinson Pressure Bar apparatus in the Dynamic Testing and Modeling Laboratory of Izmir Institute of Technology. During the experiments, a high speed camera was used to determine deformation behavior. In both directions, modulus and failure strength increased with increasing strain rate. Higher strain rate sensitivity for both elastic modulus and failure strength was observed in the in-plane direction. Based upon these experimental data, a numerical model was developed using the commercial explicit finite element code LS-DYNA to investigate compressive deformation and damage behavior of composites. Excellent agreement was demonstrated for the case of high strain rate loading. Also, the fracture geometries were successfully predicted with the numerical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.