Abstract

A di-(2-pyridylmethyl)phenylamine ((PyCH2)2NPh) supported Cu(ii)/O2 catalytic system was explored with the synthesis of pyridylmethyl-based compounds of carboxylate (PyCOOH), amide (PyC(O)NHPh), and imine (PyCH[double bond, length as m-dash]NPh) from the oxidative N-dealkylation of N-(2-pyridylmethyl)phenylamine (PyCH2NHPh) and its derivatives, by means of controlling the addition of a base and/or water to the reaction system under a dioxygen atmosphere at room temperature. Experimental studies showed that the imine and amide species could be precursors in succession in the way to the final oxidation state of carboxylates. A cyclic catalytic mechanism was proposed including the base triggered C-H bond activation of the 2-pyridylmethyl group (PyCH2-) and the intermolecular Cu-OOH α-hydrogen atom abstraction from the coordinated imine substrate (PyCH[double bond, length as m-dash]NPh).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.