Abstract

An experimental investigation was performed on the effects of the temperature, pressure, equivalence ratio, and fuel concentration on ignition delay times of dimethyl ether (DME)/O2/Ar mixtures behind the reflected shock wave. Experimental conditions used temperatures over 1000–1600 K, pressures of 1.2–20 atm, and equivalence ratios of 0.5–2.0, with fuel concentrations of 0.5–2.457%. The measurements showed that the DME mixtures have different global activation energies under different equivalence ratios. Thus, correlations were derived under different equivalence ratios based on all experimental data, which fits fairly well with the experimental data. Four recently developed models were compared to the measurements, and their predictabilities were thoroughly discussed. Finally, a systematic kinetic chemical analysis was performed to chemically interpret the observed equivalence ratio dependence and to ascertain the key reactions that control ignition of DME, which are the potential candidates for improvement of LLNL DME Mech.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.