Abstract

Experimental and computational investigations have been conducted to characterize the flow field in the supersonic ejector, with and without secondary inlets of two sizes, at stagnation pressures of 2, 2.5, 3, 4 and 5 bar. In the first case, four secondary inlet openings each with 5 mm diameter are provided on the suction chamber circumferentially. In the second case, four secondary inlet openings each with 10 mm diameter are provided on the suction chamber circumferentially. These two cases are investigated separately, at all the stagnation pressures. The wall pressure variation is validated based on the k-ω SST turbulent model with experimentally measured wall pressure distribution at 2 bar, without secondary inlet flow. Suction is found to increase with the increase of stagnation pressure in the suction chamber. The inducted mass flow promotes the mixing in the shock-train zone, by triggering the significant momentum exchange between the primary flow and secondary flow. Results show that the pressure recovery takes place as the flow enters the divergent portion of ejector.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.