Abstract
The formation of soot in premixed flames of methane, ethane, propane, and butane was studied at three different equivalence ratios. Soot particle sizes, number densities, and volume fractions were determined using classical light scattering measurement techniques. The experimental data revealed that the soot properties were sensitive to the fuel type and combustion parameter equivalence ratio. Increase in equivalence ratio increased the amount of soot formed for each fuel. In addition, methane flames showed larger particle diameters at higher distances above the burner surface and propane, ethane, and butane flames came after the methane flames, respectively. Three-layer, feed-forward type artificial neural networks having seven input neurons, one output neuron, and five hidden neurons for soot particle diameter predictions and seven hidden neurons for volume fraction predictions were used to model the soot properties. The network could not be trained and tested with sufficient accuracy to predict the number density due to a large data range and greater uncertainty in determination of this parameter. The number of complete data set used in the model was 156. There was a good agreement between the experimental and predicted values, and neural networks performed better when predicting output parameters (i.e. soot particle diameters and volume fractions) within the limits of the training data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.