Abstract

The design of FRP profile-concrete composite sections, including beams and decks, is usually governed by the shear strength of the FRP profiles. However, analytical methods that can precisely predict the shear capacity of the composite sections have not been well developed, because there is lack of knowledge of the FRP-concrete composite action and distribution of shear stress along the FRP. This paper investigates the shear behaviors of FRP-concrete composite sections and develops formulae to predict the shear capacity of the composite sections. First, flexural tests of three FRP-concrete composite beams were conducted to investigate the shear failure mode and interface behaviors. All the beams failed in FRP shear fracture along horizontal direction. Then, push-out tests were used to determine the slip property for the FRP-concrete interface which reveals that FRP stay-in-place form and steel bolts can ensure full and partial composite action, respectively. Based on the experimental study, closed-form equations to compute the maximum shear stress are derived and validated against experimental data in this paper and literature. Finally, simple yet reliable equations of shear capacity are derived and recommended for engineers to design the FRP-concrete composite sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.