Abstract

A novel slant perforated mesh-plate photoreactor (SPPR) was designed and fabricated. The central assembly of SPPR was an array of slant perforated mesh-plate coated with TiO2 (P25). The performance of SPPR in water detoxification was evaluated with regard to the degradation of phenol as the target pollutant. The effects of slant plate tilt angle (α) and perforated plate opening aperture diameter on SPPR performance were investigated and analyzed. The photocatalytic performance of SPPR increased with decreasing α. The SPPR with an α of 15° and a pore size of 1 mm showed the best performance with 9.17 h required to reach 80% of phenol degradation (4-L, initial concentration: 15 mg/L). The mass transfer was introduced into the kinetic reaction model, and mass transfer coefficients were calculated for SPPRs with different structures. Flow rate and initial pollutant concentration were investigated for their effects on degradation efficiency. In addition, the activity of SPPR under natural sunlight has also been tested to explore its potential to be applied in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.