Abstract

Abstract An experiment assessment of hydrogen production from activated aluminum alloy in portable hydrogen generator for fuel cell applications was investigated. The optimum hydrogen capacity of the high–reactive Al–Bi–NaCl alloys (the abbreviation of milled material of aluminum, bismuth and NaCl particles) is about 9–9.4 wt.%, meeting the targets (9 wt.%) of the US Department of Energy in 2015. Hydrogen production rate can be controlled via controlling the water flow rate in the generator, being 1.369–6.198 L hydrogen/min while the water flow rate ranges in 5–20 mL/min. The larger water flow rate often leads to higher temperature and results in unsafety in the generator as the hydrolysis reaction of aluminum alloy and water releases 15 kJ/g heat. However, the heat problem can be successfully eliminated by using effective cooling stytles, which enable the maximum temperature of Al–H2O mixture (the abbreviation of hydrolysis products of aluminum alloy in water) controlled less than 474 K even though the water flow rate is 20 mL/min. Therefore, the experiment results show that the portable hydrogen generator from aluminum alloy could supply the CO2–free, high hydrogen capacity and safe hydrogen for fuel cell applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.