Abstract

Traditional reliability-based design optimization (RBDO) requires a double-loop iteration process. The inner optimization loop is to find the reliability and the outer is the regular optimization loop to optimize the RBDO problem with reliability objectives or constraints. It is known that the computation can be prohibitive when the associated function evaluation is expensive. This situation is even worse when a large number of reliability constraints are present. As a result, many approximate RBDO methods, which convert the double loop to a single loop, have been developed. In this research, an engineering problem with a large number of constraints (144) is designed to test RBDO methods based on the first-order reliability method (FORM), including single- and double-loop methods. In addition to the number of constraints, this problem possesses many local minimums. Some original authors of the RBDO methods are also asked to solve the same problem. The results and the efficiencies for different methods are published and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.