Abstract

We evaluate the matrix elements ⟨Orp⟩, where are the standard Dirac matrix operators and the angular brackets denote the quantum-mechanical average for the relativistic Coulomb problem, in terms of generalized hypergeometric functions 3F2(1) for all suitable powers. Their connections with the Chebyshev and Hahn polynomials of a discrete variable are emphasized. As a result, we derive two sets of Pasternack-type matrix identities for these integrals, when p → −p − 1 and p → −p − 3, respectively. Some applications to the theory of hydrogenlike relativistic systems are reviewed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.