Abstract

Roses are important horticultural plants with enormous diversity in flowers and flowering behavior. However, molecular regulation of flowering time variation in roses remains poorly characterized. Here, we report an expansion of the FAR1/FRS-like genes that correlates well with the switch to prostrate-to-erect growth of shoots upon flowering in Rosa wichuraiana ‘Basye's Thornless' (BT). With the availability of the high-quality chromosome-level genome assembly for BT that we developed recently, we identified 91 RwFAR1/FRS-like genes, a significant expansion in contrast to 52 in Rosa chinensis ‘Old Blush’ (OB), a founder genotype in modern rose domestication. Rose FAR1/FRS-like proteins feature distinct variation in protein domain structures. The dispersed expansion of RwFAR1/FRS-like genes occurred specifically in clade I and II and is significantly associated with transposon insertion in BT. Most of the RwFAR1/FRS-like genes showed relatively higher expression level than their corresponding orthologs in OB. FAR1/FRS-like genes regulate light-signaling processes, shade avoidance, and flowering time in Arabidopsis thaliana. Therefore, the expansion and duplication of RwFAR1/FRS-like genes, followed by diversification in gene expression, might offer a novel leverage point for further understanding the molecular regulation of the variation in shoot-growth behavior and flowering time in roses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.