Abstract

Trace buffers are commonly used to capture data during in-system silicon debug. This paper exploits the fact that it is not necessary to capture error-free data in the trace buffer since that information is obtainable from simulation. The trace buffer need only capture data during clock cycles in which errors are present. A three pass methodology is proposed. During the first pass, the rough error rate is measured, in the second pass, a set of suspect clock cycles where errors may be present is determined, and then in the third pass, the trace buffer captures only during the suspect clock cycles. In this manner, the effective observation window of the trace buffer can be expanded significantly, by up to orders of magnitude. This greatly increases the effectiveness of a given size trace buffer and can rapidly speed up the debug process. The suspect clock cycles are determined through a two dimensional (2-D) compaction technique using a combination of multiple-input signature register (MISR) signatures and cycling register signatures. By intersecting the signatures, the proposed 2-D compaction technique generates a small set of remaining suspect clock cycles for which the trace buffer needs to capture data. Experimental results indicate very significant increases in the effective observation window for a trace buffer can be obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.