Abstract

Understanding the factors that influence N → S acyl transfer in native peptide sequences, and discovery of new reagents that facilitate it, will be key to expanding its scope and applicability. Here, through a study of short model peptides in thioester formation and cyclisation reactions, we demonstrate that a wider variety of Xaa-Cys motifs than originally envisaged are capable of undergoing efficient N → S acyl transfer. We present data for the relative rates of thioester formation and cyclisation for a representative set of amino acids, and show how this expanded scope can be applied to the production of the natural protease inhibitor Sunflower Trypsin Inhibitor-1 (SFTI-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.