Abstract

ABSTRACTFor the construction of highly conductive printed electrodes on a polymeric substrate with a low glass transition temperature, the development of a low temperature sinterable conductive ink has been a crucial issue in printed electronics and display applications. In this work, we introduce a novel type of self-sinterable silver ink, whose sintering is triggered at a low temperature and completed with the aid of its own exothermic reaction, and propose its exothermic reaction mechanism. Although individual components of this self-sinterable silver ink, Ag2O and silver carboxylate, exhibit endothermic behaviors, their mixture form shows a strong exothermic reaction when heated at 150 °C. It is found that the dissociated form of the used silver carboxylate contributes to the reduction of Ag2O to Ag through its recursive reaction and produces silver nanoparticles. The major source of an exothermic reaction results from the nucleation and fusion of silver nanoparticles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.