Abstract
To investigate whether ADSC-derived miR-23-enriched exosomes could protect against calcium oxalate stone formation in a hyperoxaluria rat model. An ethylene glycol- (EG-) induced hyperoxaluria rat model and an in vitro model of COM-induced HK-2 cells coculturing with RAW264.7 cells were established to explore the protective mechanisms of ADSC-derived miR-23-enriched exosomes. The results showed that treatment with miR-23-enriched exosomes from ADSCs protected EG-induced hyperoxaluria rats, and cell experiments confirmed that coculturing with miR-23-enriched exosomes alleviated COM-induced cell autophagy. Overexpressed miR-23 suppressed M1 macrophage polarization by inhibiting IRF1 expression. Furthermore, the predicted binding site between the IRF1 messenger RNA 3'-untranslated region (3'-UTR) and miR-23 was confirmed by the dual-luciferase reporter assay. In conclusion, our research gave the first evidence that ADSC-derived miR-23-enriched exosomes affected the polarization of M1 macrophages by directly inhibiting IRF1 and protecting against calcium oxalate stone formation in a hyperoxaluria rat model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.