Abstract

We previously reported that co-transplantation of exosomes from hypoxia-preconditioned adipose mesenchymal stem cells (ADSCs) improves the neoangiogenesis and survival of the grafted tissue. This study aimed to investigate the molecular mechanism of this protective effect. Exosomes were collected from normoxia-treated (nADSC-Exo) or hypoxia--treated (hypADSC-Exo) human ADSCs, and their pro-angiogenic capacity was evaluated in human umbilical vein endothelial cells (HUVECs) and a nude mouse model of subcutaneous fat grafting. Protein array was used to compare the exosome-derived proteins between nADSC-Exo and hypADSC-Exo. Compared with the nADSC-Exo group and untreated control, hypADSC-Exo treatment significantly promoted proliferation, migration and tube-formation capability of HUVECs. Protein array revealed that the levels of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), fibroblast growth factor (FGF) and their receptors (VEGF-R2, VEGF-R3), and monocyte chemoattractant protein 2 (MCP-2), monocyte chemoattractant protein 4 (MCP-4) were significantly higher in the hypADSC-Exo than in the nADSC-Exo. In the nude mice model of fat grafting, immunofluorescence of CD31 showed that hypADSC-Exo dramatically improved neovascularization around the graft. Furthermore, compared with nADSC-Exo and control groups, cotransplantation of hypADSC-Exo significantly increased the protein expression of EGF, FGF, VEGF/VEGF-R, angiopoietin-1(Ang-1) and tyrosine kinase with immunoglobulin-like and EGF-like domains 1(Tie-1, an angiopoietin receptor) in the grafted tissue at 30 days after transplantation. Immunohistochemical analysis demonstrated that hypADSC-Exo treatment significantly increased VEGF-R expression in the grafted tissue. Exosomes from hypoxia-treated human ADSCs possess a higher capacity to enhance angiogenesis in fat grafting, at least partially, via regulating VEGF/VEGF-R signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.