Abstract

This study aims to elucidate the role of miR-129/miR-342 loaded in exosomes derived from vascular smooth muscle cells (VSMCs) stimulated by intermittent hypoxia in calcified aortic valvular disease (CAVD). Bioinformatics analysis was conducted to identify differentially expressed miRs in VSMCs-derived exosomes and CAVD samples, and their potential target genes were predicted. VSMCs were exposed to intermittent hypoxia to induce stimulation, followed by isolation of exosomes. Valvular interstitial cells (VICs) were cultured in vitro to investigate the impact of miR-129/miR-342 on VICs' osteogenic differentiation and aortic valve calcification with eIF2α. A CAVD mouse model was established using ApoE knockout mice for in vivo validation. In CAVD samples, miR-129 and miR-342 were downregulated, while eIF2α and ATF4 were upregulated. miR-129 and miR-342 exhibited inhibitory effects on eIF2α through targeted regulation. Exosomes released from intermittently hypoxia-stimulated VSMCs contained miR-129 and miR-342. Overexpression of miR-129 and miR-342, or silencing ATF4, suppressed VICs' osteogenic differentiation and aortic valve calcification, which could be rescued by overexpressed eIF2α. Collectively, intermittent hypoxia stimulation of VSMCs leads to the secretion of exosomes that activate the miR-129/miR-342 dual pathway, thereby inhibiting the eIF2α/ATF4 axis and attenuating VICs' osteogenic differentiation and CAVD progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.