Abstract

Reporter gene technology was employed to detect the activity of an alginate promoter of Pseudomonas aeruginosa when the organism was grown as a biofilm on a Teflon mesh substratum and as planktonic cells in liquid medium. Alginate biosynthetic activity was determined with a mucoid cell line derived from a cystic fibrosis isolate and containing an alginate algC promoter fused to a lacZ reporter gene. Reporter activity was demonstrated with chromogenic and fluorogenic substrates for beta-galactosidase. Expression of algC was shown to be upregulated in biofilm cells compared with planktonic cells in liquid medium. Gene up-expression correlated with alginate biosynthesis as measured by Fourier transform infrared spectroscopy, uronic acid accumulation, and alginate-specific enzyme-linked immunosorbent assay. The algC promoter was shown to have maximum activity in planktonic cultures during the late lag and early log phases of the cell growth cycle. During a time course experiment, biofilm algC activity exceeded planktonic activity except during the period immediately following inoculation into fresh medium. In continuous-culture experiments, conversion of lacZ substrate was demonstrated microscopically in individual cells by epifluorescence microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.