Abstract
BackgroundHypoxia stress is thought to be one of the major abiotic stresses that inhibits the growth and development of higher plants. Phyllostachys pracecox is sensitive to oxygen and suffers soil hypoxia during cultivation; however, the corresponding solutions to mitigate this stress are still limited in practice. In this study, Spermidine (Spd) was tested for regulating the growth of P. praecox seedlings under the hypoxia stress with flooding.ResultsA batch experiment was carried out in seedlings treated with 1 mM and 2 mM Spd under flooding for eight days. Application of 1 mM and 2 mM Spd could alleviate plant growth inhibition and reduce oxidative damage from hypoxia stress. Exogenous Spd significantly (P < 0.05) increased proline, soluble protein content, catalase (CAT), superoxide dismutase (SOD), and S-adenosylmethionine decarboxylase (SAMDC) activity, enhanced abscisic acid (ABA) and indole-3-acetic acid (IAA) content, and reduced ethylene emission, hydrogen peroxide (H2O2), superoxide radical (O2·−) production rate, ACC oxidase (ACO) and ACC synthase (ACS) to protect membranes from lipid peroxidation under flooding. Moreover, exogenous Spd up-regulated the expression of auxin-related genes auxin responsive factor1 (ARF1), auxin1 protein (AUX1), auxin2 protein (AUX2), auxin3 protein (AUX3) and auxin4 protein (AUX4), and down-regulated the expression of ethylene-related ACO and ACS genes during flooding.ConclusionThe results indicated that exogenous Spd altered hormone concentrations and the expression of hormone-related genes, thereby protecting the bamboo growth under flooding. Our data suggest that Spd can be used to reduce hypoxia-induced cell damage and improve the adaptability of P. praecox to flooding stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.