Abstract
In the photosynthetic green filamentous bacterium Chloroflexus aurantiacus, excitation energy is transferred from a large bacteriochlorophyll (BChl) c antenna via smaller BChl a antennas to the reaction center. The effects of substituted 1,4-naphthoquinones on BChl c and BChl a fluorescence and on flash-induced cytochrome c oxidation were studied in whole cells under aerobic conditions. BChl c fluorescence in a cell suspension with 5.4 μM BChl c was quenched to 50% by addition of 0.6 μM shikonin (( R)-2-(1-hydroxy-4-methyl-3-pentenyl)-5,8-dihydroxy-1,4-naphthoquinone), 0.9 μM 5-hydroxy-1,4-naphthoquinone, or 4 μM 2-acetyl-3-methyl-1,4-naphthoquinone. Between 25 and 100 times higher quinone concentrations were needed to quench BChl a fluorescence to a similar extent. These quinones also efficiently inhibited flash-induced cytochrome c oxidation when BChl c was excited, but not when BChl a was excited. The quenching of BChl c fluorescence induced by these quinones correlated with the inhibition of flash-induced cytochrome c oxidation. We concluded that the quinones inhibited electron transfer in the reaction center by specifically quenching the excitation energy in the BChl c antenna. Our results provide a model system for studying the redox-dependent antenna quenching in green sulfur bacteria because the antennas in these bacteria inherently exhibit a sensitivity to O 2 similar to the quinone-supplemented cells of Cfx. aurantiacus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.