Exogenous abscisic acid enhances freeze-thaw stress tolerance in Antarctic moss Sanionia uncinata through coordinated antioxidant defense and osmoprotectant accumulation.
Exogenous abscisic acid enhances freeze-thaw stress tolerance in Antarctic moss Sanionia uncinata through coordinated antioxidant defense and osmoprotectant accumulation.
- Research Article
27
- 10.3389/fpls.2017.01340
- Aug 4, 2017
- Frontiers in Plant Science
To elucidate promoting and inhibiting effects of hydrogen cynamide (HC) and abscisic acid (ABA) on quiescence release of grape buds, physiological and molecular approaches were used to explore the mechanisms of quiescence based on metabolic and gene expression analysis. Physiological and molecular mechanisms involved in bud quiescence of grape were studied before and after application of HC, ABA, and ABA-HC. The data showed that ABA inhibited proclamation of quiescence in grape buds and attenuated the influence of HC. Bud quiescence was promoted and regulated by HC and ABA pre-treatment on buds of grape cultivar “Shine Muscat” with 5% HC, 100 μM ABA and combination of ABA-HC (5% HC+100 μM ABA) during quiescence under forcing condition. Exogenous application of ABA elevated superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) related specific activities, while catalase (CAT) activity was increased during initial period of forcing and then decreased. The concentration of plant growth hormones including gibberellins (GA) and indole acetic acid increased by HC application but decreased the ABA contents under forcing condition. ABA increased the fructose content during quiescence under forcing condition while sucrose and total soluble sugars peaked in HC treated buds as compared to control. Genes related to ABA pathway, protein phosphatase 2C (PP2C family) were down regulated in the buds treated with HC, ABA and ABA-HC as compared to control while two genes related to GA pathway (GID1 family), out of which one gene showed down regulation during initial period of forcing while other gene was up regulated in response to HC and ABA-HC treatments as compared to control. Exogenous ABA application up regulated genes related to antioxidant enzymes as compared to control. The gene probable fructose-bisphosphate aldolase 1, chloroplastic-like, was up regulated in response to ABA treatment as compared to control. Analysis of metabolites and related gene expression pattern would provide a comprehensive view of quiescence after HC, ABA, and ABA-HC treatments in grape buds which may helpful for ultimate improvement in table grape production.
- Research Article
- 10.1016/j.scienta.2024.113368
- Jun 8, 2024
- Scientia Horticulturae
Abscisic acid enhances alkaline stress tolerance in grapevines: Physiological and transcriptional profiling
- Research Article
105
- 10.1093/jxb/erm160
- Jul 13, 2007
- Journal of Experimental Botany
The effects of exogenous abscisic acid (ABA) on the acclimation of Picea asperata to water deficit were investigated in two populations originating from wet and dry climate regions of China. Exogenous ABA was sprayed onto the leaves, and changes in plant growth and structure, gas exchange, water use efficiency (WUE), endogenous ABA content, and antioxidant enzyme levels were monitored. The results demonstrated that ABA application affected the two P. asperata populations in different ways during the water deficit. ABA application resulted in significantly lower CO(2) assimilation rates (A) under water deficit in plants from the wet climate population, whereas there were no significant changes in this parameter in the dry climate population. On the other hand, ABA application significantly decreased the dry shoot biomass, stomatal conductance (g(s)), transpiration rate (E), and malondialdehyde (MDA) content, and it significantly increased the leaf mass per area (LMA), root/shoot ratio (Rs), fine root/total root ratio (Ft), WUE, ABA content, and the superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT) activities under water-deficit conditions in the dry climate population, whereas ABA application did not significantly affect these parameters in the wet climate population. The results clearly demonstrated that sensitivity to an exogenous ABA application is population-dependent in P. asperata. Direct evidence is presented that variation in physiological mechanisms rather than different rates of ABA absorption explain the population differentiation in the sensitivity to exogenous ABA, and that the physiological basis for the amplified response to water deficit caused by exogenous ABA, present mainly in the dry climate population, is related to internal ABA accumulation. These results provide evidence for adaptive differentiation between populations of P. asperata, and they support the expected relationship between environmental heterogeneity and the magnitude of plastic responses in plant populations.
- Research Article
62
- 10.1016/j.scienta.2021.110176
- Apr 29, 2021
- Scientia Horticulturae
Relationship between melatonin and abscisic acid in response to salt stress of tomato
- Research Article
- 10.3390/agronomy13122897
- Nov 25, 2023
- Agronomy
The water content of maize kernels during harvest is a critical factor influencing grain harvest practices globally. Abscisic acid (ABA) plays a pivotal role in grain development during the grain-filling process. Yet, there has been limited reporting on the regulatory mechanism of grain dehydration induced by exogenous ABA using proteomic techniques. In this study, two maize genotypes with distinct dehydration rates, DK517 (fast dehydration) and ZD1002 (slow dehydration), were treated with ABA after the heading stage. Results revealed a 20% lower yield in DK517 compared to ZD1002 following ABA application. Sixty days after pollination, the grain water content decreased to 23.55% in DK517 and 30.42% in ZD1002 due to ABA treatment. Through proteomic analysis, 861 and 118 differentially expressed proteins (DAPs) were identified in DK517 and ZD1002, respectively, as a result of ABA treatment. GO analysis indicated that the primary metabolic process, nitrogen compound metabolic process, and hormone metabolic process were significantly enriched among the DAPs in DK517 induced by ABA, while these pathways were absent in ZD1002. Twenty-four and fifteen overlapping DAPs showed contrasting responses in the two maize genotypes after ABA treatment. Notably, the expression levels of six known ABA signaling genes, including SnRK2 and DRE-like proteins, were downregulated in DK517 but remained unaltered in ZD1002 following ABA application. These findings underscore the distinct effects of exogenous ABA on the grain-filling characteristics of different maize genotypes, emphasizing the importance of the hormone metabolic process in regulating kernel water content induced by exogenous abscisic acid in maize.
- Research Article
20
- 10.1007/s11738-018-2716-6
- Jul 20, 2018
- Acta Physiologiae Plantarum
Leaf rolling observed in some crops such as maize, rice, wheat and sorghum is an indicator of decreased water status. Moderate leaf rolling not tightly or early increases the photosynthesis and grain yield of crop cultivars under environmental stresses. Moreover, the effects of exogenous abscisic acid (ABA) on stomatal conductance, water status and synthesis of osmotic compounds are a well-known issue in plants subjected to water deficit. However, it is not clear how the cross-talk of ABA with H2O2 and osmolyte compounds affects the leaf rolling mechanism. Regulation mechanism of leaf rolling by ABA has been first studied in maize seedlings under drought stress induced by polyethylene glycol 6000 (PEG 6000) in this study. ABA treatment under drought stress reduced hydrogen peroxide (H2O2) content and the degree of leaf rolling (%) while the treatment-induced ABA synthesis, osmolyte levels (proline, polyamine and total soluble sugars) and some antioxidant enzyme activities in comparison to the plants that were not treated with ABA. Furthermore, exogenous ABA up-regulated the expression levels of arginine decarboxylase (ADC) and pyrroline-5-carboxylate synthase (P5CS) genes and down-regulated polyamine oxidase (PAO), diamine oxidase (DAO) and proline dehydrogenase (ProDH) gene expressions. When endogenous ABA content was decreased by the treatment of fluoridone (FLU) that is an ABA inhibitor, leaf rolling degree (%), H2O2 content and antioxidant enzyme activities increased, but osmolyte levels, ADC and P5CS gene expressions decreased. Finally, the treatment of ABA to maize seedlings exposed to drought stress resulted in the stimulation of the antioxidant system, osmotic adjustment and reduction of leaf rolling. We concluded that ABA can be a signal compound cross-talking H2O2, proline and polyamines and thus involved in the leaf rolling mechanism by providing osmotic adjustment. The results of this study can be used to provide data for the molecular breeding of maize hybrids with high grain yield by means of moderately rolled leaves.
- Research Article
26
- 10.1016/j.scienta.2014.10.004
- Oct 22, 2014
- Scientia Horticulturae
Foliar applications of abscisic acid decrease the incidence of blossom-end rot in tomato fruit
- Research Article
111
- 10.1016/s0168-9452(98)00154-x
- Nov 1, 1998
- Plant Science
Expression of antioxidant enzymes in response to abscisic acid and high osmoticum in tobacco BY-2 cell cultures
- Research Article
8
- 10.1016/j.plgene.2018.05.001
- May 8, 2018
- Plant Gene
Exogenous ABA and endogenous ABA affects ‘Kyoho’ grape berry coloration in different pathway
- Research Article
18
- 10.1007/s11738-016-2190-y
- Jun 27, 2016
- Acta Physiologiae Plantarum
Abscisic acid (ABA) is an important signaling molecule for plants under drought tolerance. However, ABA itself has many limitations to be used in agriculture practically. Recently, AM1 (ABA-mimicking ligand) has been found to replace ABA. In this study, we have investigated AM1’s potential role for drought tolerance by growing two contrasting rapeseed (Brassica napus L.) genotypes: Qinyou 8 (drought sensitive) and Q2 (drought resistant) with exogenous ABA or AM1 application under well-watered and drought-stressed conditions. Results demonstrate that drought stress has hampered plant growth (relative height growth rate, plant biomass, leaf area), plant water status (leaf relative water content, root moisture content, leaf water potential), photosynthetic gas exchange attributes like net photosynthesis rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (E); chlorophyll fluorescence parameters like photosynthetic efficiency (Fv/Fm), effective quantum yield of PSII (Φ PSII ), photochemical quenching coefficient (qL), electron transport rate (ETR) and chlorophyll content, especially for Qinyou 8 significantly compared to well-watered plants. Whereas increased root/shoot ratio (R/S), water use efficiency (WUE) and non-photochemical quenching (NPQ) was recorded in both genotypes under drought stress. On the other hand, exogenous ABA or AM1 treatment has regulated all the above parameters in a rational way to avoid drought stress. Chloroplast transmission electron microscope images, especially for Qinyou8, have revealed that oxidative stress induced by drought has blurred the grana thylakoids, increased the size or number of plastoglobules due to lipid peroxidation, and the presence of starch granules depict weak capacity to convert them into simple sugars for osmotic adjustment. However, intact grana thylakoid, few plastoglobules with no or very few starch granules were observed in the chloroplast from ABA- or AM1-treated plants under drought. More importantly, AM1-treated plants under drought stress have responded in an extremely similar way like ABA-treated ones. Finally, it is suggested that AM1 is a potential ABA substitute for plant drought tolerance.
- Research Article
- 10.1051/e3sconf/202129303023
- Jan 1, 2021
- E3S Web of Conferences
In order to evaluate the effects of exogenous abscisic acid (ABA) in alleviating nickel (Ni) stress in wheat plants. We studied the changes of biochemical and physiological in wheat seedlings exposed to 250 μM Ni with or without different treatments of ABA. Exposed to Ni (250 μM) caused adverse effect on growth of wheat seedlings, which was accompanied by increased the concentrations of superoxide anion(O2−) and malondialdehyde (MDA). However, exogenous application of ABA (2.5 and 5 μM) alleviated the Ni-induced inhibition of plant growth, decreased the concentrations of O2− and MDA in wheat shoots. Further, application of ABA significantly modulated the activities of antioxidant enzymes and enhanced content of proline and soluble sugar in Ni-stressed wheats, but the application of 20 μM of ABA had no different significantly response for these parameters. The results indicated that application of ABA enhanced the antioxidant defense activities in Ni-stressed wheats, thus alleviating Ni-induced oxidative injury and enhancing Ni tolerance.
- Research Article
66
- 10.1002/ps.4655
- Sep 12, 2017
- Pest Management Science
Callose is a plant cell wall polysaccharide controlled by β-1,3-glucanase and synthase. Abscisic acid (ABA) is an important plant hormone. Exogenous ABA promotes rice resistance to pests. Whether exogenous ABA could reduce the decline in rice yield after brown planthopper (Nilaparvata lugens Stål; BPH) feeding is an important question, however, the mechanisms behind rice resistance induced by ABA remain obscure. Electronic penetration graph (EPG) recording indicated a significant increase in rice resistance to BPH, and the number of BPH eggs decreased significantly upon application of exogenous ABA. As the concentration of ABA increased, the reduction in rice yield decreased significantly after BPH feeding. Further studies showed that β-1,3-glucanase activity was significantly lower, but synthase activity was higher after ABA treatment than in controls. Our results demonstrated that exogenous ABA suppressed β-1,3-glucanase and induced synthase activity, and promoted callose deposition. This is an important defense mechanism that prevents BPH from ingesting phloem sap. These studies provide support for an insect-resistance mechanism after ABA treatment and provide a reference for the integrated management of other piercing-sucking pests. © 2017 Society of Chemical Industry.
- Research Article
11
- 10.1016/j.envexpbot.2022.105069
- Nov 1, 2022
- Environmental and Experimental Botany
ABA-insensitivity of alfalfa (Medicago sativa L.) during seed germination associated with plant drought tolerance
- Research Article
48
- 10.1007/s00344-008-9060-9
- Sep 3, 2008
- Journal of Plant Growth Regulation
The phytohormone abscisic acid (ABA) has been proposed to act as a mediator in plant responses to a range of stresses, including salt stress. Most studies of ABA response apply ABA as a single dose. This may not resemble the prolonged increasing endogenous ABA levels that can occur in association with slowly increasing salinity stresses in nature or field situations. Salt stress response based on method of ABA application was examined in four potato genotypes of varying salt stress resistance: the sensitive ABA-deficient mutant and its normal sibling, a resistant genotype line 9506, and commercial cultivar ‘Norland’ of moderate resistance. ABA was applied by root drench at 0, 50, 75, or 100 μM concentrations through a single dose, or by slowly increasing multiple ABA doses in a sand-based growing system under greenhouse conditions. Salt tolerance was then evaluated after 2 weeks of exposure to 150–180 mM NaCl stress. The method of ABA application had a marked effect on the responses to salt stress. Plant responses to the method of ABA application were differentiated according to (1) growth rate, (2) root water content, and (3) apparent shoot growth response. Under a single dose, growth rate increased in all genotypes under salt stress, whereas slowly increasing multiple ABA applications generally maintained stable growth rates except in the ABA-deficient mutant where there was an upward growth trend. Percent root water content was elevated only under slowly increasing multiple ABA doses in two genotypes, whereas none of the single-dose treatments induced any change. The single ABA dose enhanced vertical growth, whereas the slowly increasing multiple ABA dose applications enhanced lateral shoot growth. Because exogenous application is still an artificial system, endogenous ABA was supplied through grafting of ABA-deficient mutant scions onto rootstocks with known elevated ABA levels. Multiple exogenous ABA applications as low as 50 μM elicited similar shoot water content responses as grafting treatments without ABA application in the mutant genotype but had no effect on the ABA normal sibling. Shoot dry weight was significantly increased through grafting over all exogenous ABA treatments. Our study further indicates that the method of ABA application regime in itself can alter plant responses under salt stress and that certain application regimes may reflect responses to elevated endogenous levels of ABA.
- Research Article
247
- 10.1104/pp.92.1.205
- Jan 1, 1990
- Plant Physiology
Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.
- New
- Research Article
- 10.1016/j.cryobiol.2025.105540
- Nov 1, 2025
- Cryobiology
- Research Article
- 10.1016/j.cryobiol.2025.105341
- Oct 23, 2025
- Cryobiology
- Research Article
- 10.1016/j.cryobiol.2025.105338
- Oct 17, 2025
- Cryobiology
- Research Article
- 10.1016/j.cryobiol.2025.105335
- Oct 17, 2025
- Cryobiology
- Research Article
- 10.1016/j.cryobiol.2025.105333
- Oct 15, 2025
- Cryobiology
- Research Article
- 10.1016/j.cryobiol.2025.105334
- Oct 11, 2025
- Cryobiology
- Research Article
- 10.1016/j.cryobiol.2025.105337
- Oct 2, 2025
- Cryobiology
- Front Matter
- 10.1016/j.cryobiol.2025.105327
- Oct 1, 2025
- Cryobiology
- Front Matter
- 10.1016/j.cryobiol.2025.105328
- Sep 27, 2025
- Cryobiology
- Research Article
- 10.1016/j.cryobiol.2025.105325
- Sep 24, 2025
- Cryobiology
- Ask R Discovery
- Chat PDF
AI summaries and top papers from 250M+ research sources.