Abstract

Assembly of SNAREs (soluble N:-ethylmaleimide- sensitive factor attachment protein receptors) mediates membrane fusions in all eukaryotic cells. The synaptic SNARE complex is represented by a twisted bundle of four alpha-helices. Leucine zipper-like layers extend through the length of the complex except for an asymmetric and ionic middle layer formed by three glutamines (Q) and one arginine (R). We have examined the functional consequences of Q-R exchanges in the conserved middle layer using the exocytotic SNAREs of yeast as a model. Exchanging Q for R in Sso2p drastically reduces cell growth and protein secretion. When a 3Q/1R ratio is restored by a mirror R-->Q substitution in the R-SNARE Snc2p, wild-type functionality is observed. Secretion is near normal when all four helices contain Q, but defects become apparent when additional mutations are present in other layers. Using molecular dynamics free energy perturbation simulations, these findings are rationalized in structural and energetic terms. We conclude that the asymmetric arrangement of the polar amino acids in the central layer is essential for normal function of SNAREs in membrane fusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.