Abstract
Abstract For the following quasilinear Choquard-type equation: − Δ u − Δ ( u 2 ) u + V ( x ) u = ( I μ * ∣ u ∣ p ) ∣ u ∣ p − 2 u , x ∈ R N , -\Delta u-\Delta \left({u}^{2})u+V\left(x)u=\left({I}_{\mu }* {| u| }^{p}){| u| }^{p-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N ≥ 3 , 0 < μ < N N\ge 3,0\lt \mu \lt N , V ( x ) = a − b 1 + ∣ x ∣ 2 V\left(x)=a-\frac{b}{1+{| x| }^{2}} , 1 < a < + ∞ 1\lt a\lt +\infty , 0 < b < 1 2 0\lt b\lt \frac{1}{2} , 2 ( N + μ ) N < p < 2 ( N + μ ) N − 2 \frac{2\left(N+\mu )}{N}\lt p\lt \frac{2\left(N+\mu )}{N-2} , and I μ {{I}}_{\mu } is the Riesz potential. Our work is finding the positive solutions and the ground-state solutions. Using a change of variables method, we overcome the difficulties which the quasilinear term may bring us and consider the corresponding functional with variational arguments. Then, we establish the nonexistence results via the Pohožaev identity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have