Abstract
Inertial waves occur naturally in rotating fluids such as the Sun and the Earth's atmosphere. Rossby waves in the Sun have the potential to shed fresh light on interior turbulence and convection that prior seismic methods, reliant on sound waves, have been unable to accomplish. Here, we utilize ∼13 years of observational products taken by the space-based helioseismic and magnetic imager, onboard the solar dynamics observatory, to characterize solar equatorial Rossby waves. By examining maps of motions at the surface using two different methods, we are able to identify Rossby modes up to azimuthal order m = 30, approximately up to twice the spatial wavenumber limit of previous studies. The dispersion relation of these modes departs significantly from the classical two-dimensional Rossby-Haurwitz description. A parameter study of the effect of superadiabaticity and viscous diffusion on these inertial modes indicates that each parameter plays a role in influencing both the frequencies and linewidths of high m modes. Using the Rhines-scale relation, we constrain the root mean square amplitude of turbulent convection more tightly to ∼2 m/s, adding more evidence to the paradigm of weakly convective amplitudes at large scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.