Abstract
In this paper we investigate the existence of positive solution for a class of quasilinear problem on an Orlicz-Sobolev space that can be nonreflexive $$ - \Delta_{\Phi} u +V(x)\phi(|u|)u= K(x)f(u)\quad\mbox{in } \mathbb{R}^{N}, $$ where $ N \geq 2 $, $ V, K $ are nonnegative continuous functions and $f$ is a continuous function with a quasicritical growth. Here we extend the Hardy-type inequalities presented in \cite{AlvesandMarco} to nonreflexive Orlicz spaces. Through inequalities together with a variational method for non-differentiable functionals we will obtain a ground state solution. We analyze also the problem with $V=0$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.